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Abstract: The RZ-invariant of a simple connected graph G is defined as the sum
of the terms (Deg(u) + Deg(v) — 2)? over all edges uv of G, where Deg(u) is the
degree of a vertex u in G. In this paper, we obtain some new upper and lower
bounds for the RZ-invariant in terms of other graph parameters.
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1. Introduction

Topological index is a graph theoretical property that is preserved by isomor-
phism. The chemical information derived through topological index has been found
useful in chemical documentation, isomer discrimination, structure property cor-
relations. The interest in topological indices is mainly related to their use in non-
empirical quantitative structure-property relationships and quantitative structural-
activity relationships. The first and second Zagreb invariant of a graph were first
introduced by Gutman in [4] which are the oldest and most used topological indices
3, 1] defined as M;(G) = > Deg(v)? and My(G) = > Deg(u)Deg(v).

veEE(G) weE(G)

Analogues to Zagreb indices Milicevié¢ et al. [6] in 2004 reformulated the Zagreb

invariant in terms of edge degrees instead of vertex degrees, where the degree of
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an edge Deg(e) is defined as Deg(e) = Deg(u) + Deg(v) — 2. Thus the first RZ-

invariant of a graph G is defined as RZ(G) = Y. Deg(e)> = > (Deg(u) +
e€E(Q) weE(G)

Deg(v) — 2)2. RZ-invariant, particularly its upper and lower bounds has attracted

recently the attention of many mathematicians and computer scientists, see [2, 5, 6,

7]. In this paper, we obtain some new upper and lower bounds for the RZ-invariant

in terms of other graph parameters.

2. Main Results
The inverse vertex degree of G, denoted by ID(G), is defined as ID(G) =
> Deg( ) and the inverse edge degree of G with non-isolated edges is defined as
zeV(G)
ID(G) = X 5

ccm(q) D9

Theorem 2.1. Let G be a graph with s vertices and t edges. Then RZ(G) <
2<A(G) +0(G) — 2) M (G) — 4t<A(G)6(G) — 1) with equality if and only if G is

reqular.

Proof. For any vertex v € V(G), we have §(G) < Deg(v) < A(G). Similarly, for

any edge e; € E(G), we get 2(5(G) — 1) < Deg(e) < Deg(v) < 2(A(G) — 1) with

the edges are labeled and bounded by 5(G) < Deg(v;) < A G) for ¢
1) 2

The edge degree is bounded by ey, es, .. ., e; such that Deg(e
Deg(e;). Hence

IV 1o
Vv

Deg(e)? = Y- (Degles)(Deg(es) — Degler)) + Degle:) Deg(er))

M)~

<.
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<> (Degler)(Degles) — Degler) + Degles) Deg(er))

=1

-

(Q(A(G) - 1) (Deg(ei) ~2(5(G) — 1)) + Deg(ei)2<5(G) - 1))

i=1

(Q(A(G ) th (Deg e;) — 4(A(G) — 1)) (6(6‘) - 1) zt:(u.

i=1 i=1

From the definition of RZ-invariant, we obtain; ) <Deg(u) + Deg(v) —
weFE(G)

2
2)" < (2A(6) +8(G) ~4) X (Deglu) + Deglv) — 2) — 4(3(G) ~ 1)(A(G) -
wE(G)
1) S (1). Hence RZ(G) < 2<A(G) +6(G) — 2) M (G) — 4<A(G)5(G) - 1>t.
weE(G)
This completes the proof with equality if and only if G is regular.
Next we improve the bounds given in Theorem 2.1 by using Harmonic index
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H(G) which is defined for a connected graph G as H(G) = ) m.
uweE(G)

Theorem 2.2. Let G be a simple connected graph with s vertices and t edges.
Then RZ(G) < (2(A(G) +8(G)) — 3) M(G) — 2t (A(G) 1 6(G) + 25(G)A(G) —
I(GA(G)H(G) — 2). Equality holds if and only if G is a reqular graph.

Proof. By Theorem 2.1, RZ(G) < 2<A(G)+(5(G) )Ml(G)—ZLt (5(G)A(G)—1>.

For any edge uv € E(G), it is true that
inequality, we obtain

W < 1 and using in the above

Z [1 ~ Degla) j—Deg(U)] (Deg(u) + Deg(v) — 2)2

uwveE(G)

< (2(A(G) +5(Q)) — 4) 3 [1 ~ Dol i Bes (U)] (Deg(u) + Deg(v))

weE(G)

—4A@)S(G) -1) > [1_Deg(u)iD€9(U)}

weEE(G)

UUEZE(G) [(Deg(u) + Deg(v) — 2)2 - (Deg(u) + Deg(”)) +4 - Deg(u) j_ Deg(v)}

< (2AA@) +8(G) —4) > [Deg(u) + Deg(v)] - (2AAG) +3(G)) - 4)t
wveE(G)

sy 3 (4

w€EE(G)

By the definitions of Zagreb and RZ invariants, we have

RZ(G) = Mi(G) + 4t — 2H(G) < (< (G) +8(G)) — 4) M () (2(a(6) + 8(G)) - 4)t

,4(A(G)6(G)—1)t+2(A(G) quE(G Deg(u +Deg >

Hence RZ(G) = Mi(G) +2H(G) — 4t + (Z(A(G) +5(Q)) — 4) Mi(G) = 2(A(G) +
S(G))E + 4t — A(A(G)S(G))t + 4t + 2(A(G)3(G) — 1) H(G) = (Q(A(G) (@) —

3) Mi(G) —2(A(G)+(G))t —4A(G)o(G)t + 4t +2A(G)6(G)H(G). Equality holds
if and only if G is a regular graph, hence completes the proof.

Theorem 2.3. Let G be a simple connected graph with s vertices and t edges. If G
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has no isolated edges, then RZ(G) < (2(A(G) +46(G)) — 3) M, (G) — 2t <3A(G) +

30(G)+2(A(G) —1)(6(G)—1) — 5> +4(A(G) = 1)(6(G) — 1)ID.(G) with equality

if and only G is a reqular graph.
Proof. Let G be a graph with no isolated edges. Then Deg(u) + Deg(v) > 2 and
with the assumption of the proof of Theorem 2.1, we have

t t

3 [1_1%;(61_)}1)@(6»2 < (280 +0G)-4) Y [1—1%;@}1?69(@0

—4AG) - DOEG) =) Y] {1 - Degl(ei)}

t

S Deglen 3 Degler) < (2<A<G>+6(G>>—4)[ﬁjDeg@-)—Zl}
i=1 i=1 =1

= i=1
t

—4(A(G) - 1(3(G) - 1) [Z I+, De;(e)]

Y (Deg(u) + Deg(v) =2)* < 3 (Deg(u) + Deg(v) - 2)
uv€E(G) wveE(G)

+(2(A(G) (@) — 4) 3" (Deg(u) + Deg(v) — 2)
uwweE(G)
- (Q(A(G) +o(G)) — 4>t —4(A(G) - D)(5(G) — 1)t
1
2 (Deg(u) + Deg(v) —2)°

uveE(G)

+A(A(G) = D(0(G) = 1)

From the definition of RZ-invariant, we have RZ(G) < M;(G) — 2t + 2<A(G) +
3(G) — 2) M(G) — 6(A(G) +5(G) — 2)75 —A(A(G) = D(G) — 1)t + 4(A(G) —

D(0(G)—1)ID.(G) = (1 +2((A(G)+46(G)) — 2)) M;(G)+10t—6(A(G)+0(G))t—
4(AG) = 1D)(6(G) — Dt + 4(A(G) — 1)(0(G) — 1)ID.(G). The equality holds for
any vertex v € V(G), Deg(v) = A(G) = 6(G). This implies that G is regular.
The bidegreed graph is a graph whose vertices have exactly two vertex degrees
A(G) and 0(G).
Theorem 2.4. Let G be a simple connected graph with s vertices and t edges. If G
has no isolated edges, then RZ(G) < (A(G)+5(G)—4> M (G)+A(G)o(G)ID(G)—
2t(A(G)6(G) — 3) — (A(G) + d(G))s with equality if and only if G is regular (or)
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bidegreed graph.

Proof. Suppose a, A € R and z;,y; be two sequences in such a way that it has the
property ay; < x; < Ay; for i = 1,2,...,s and w; be any sequence of positive real
numbers, it holds w;(Ay; — ;) (x; — ay;) > 0. Since wj is a positive sequence, choose

w; = m; —n; such that m; > n;, we get Z(ml —ny;) ((A +a)zy; — v — Aayf) > 0.

By setting A = A(G),a = §(GQ),z; = Deg(vl) yi = 1,m; = Deg(v;) and n; =
Deg(v;)™1, we have
(A(G) +4(G)) 2 Deg(v:)* — Z Deg(v;)* = (A(G)6(@G)) ; Deg(vi) = (A(G) +
(@) zsj 1— zsj Deg(v;) — (A(G)o(G)) Z Degioy- Simplify the above inequality, we
=1
have (A(G)+5(G)) 1(G)—F(G)— 2UAS > (A(G)+5(G))s—2t—A(G)5(G)]D(G).
F(G) < (A(G)+(Q)) M1 (G)—2tAd— (A(G)+6(G))s+2t+ A(G)(G)ID(G)+
At — AM,(G).
From the definition of RZ-invariant, we obtain RZ(G) < (A(G) + 0(G) —
M (G) + A(G)6(G)ID(G) — 2t(A(G)o(G) — 3) — (A(G) 4+ 6(G))s.
Theorem 2.5. Let G be a simple connected graph with s vertices and t edges. If G
has no isolated edges, then RZ(G) < (A(G)+(5(G)—4> M (G)+A(G)o(G)ID(G)—
2t(6(G)0(G) — 3) — (0(G) + 4(G))s.
Proof. The proof follows by using similar arguments as in the proof of theorem
??7. By setting A = A(G),a = §(G),z; = d(v;),y; = 1,t; = d(v;) and a; = 1, we

have (A(G)+6(G)) zl Deg(v:)?— zl Deg(v)? — (A(G)8(G)) 21 Deg(v) > (A(G)+

5(G)) 3 Deg(v) = 3= Deg(wi)? — (AG)3(G)) X (1)

(A(G) + (G)I(G) — F(G) ~ AAG)(G) > (MG) +5(G)2 + Mi(G) +
(G) (G)s. F(G) < (A(G) +0(G))Mi(G) — 2tA(G)o(G) — (A(G) +0(G))2t +
Mi(G)+A(G)6(G)s+4t —4M;(G). From the definition of RZ-invariant, we obtain

the required result.

Theorem 2.6. Let G be a simple connected graph with s vertices and t edges. If G
has no isolated edges, then RZ(G) > F(G)+2Ms(G)+4t—4M:(G)+ 5 [(M1(G))* —
s?| + ID(G). Equality holds if and only if G is regular.
Proof. Suppose wy, ws, ..., w, be non-negative weights, then we have the weighted
n n n 2
version of Cauchy-Schwartz inequality, we have > w;a? > wb? > <Z wiaibi> :
i=1

i=1 i=1
Let w; = m; — n; such that m; > n; > 0. Then
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S S

S S 2

ST ma? > mib? — (Z(mlal Z)) > Z n;a’ Z n;ib? — < Z(niaibi)) > (.
i=1 i=1 i=1 i=1

By setting m; = Deg(v;), n; = m, al = Deg(v;) and b; = 1, for all i =
1,2,...,s in the above inequality we have,

S

ZDeg ZDeg ) (ZDeg v; 2) > ZDeg vi) 2 Degl(vl) - (i(”)Z

= i=1
Z Deg(v:)® >
i=1

S

KZD“’ ) ) +ZD€9 ) ZDeglwz)‘(i(”ﬂ

i: Deg(v;) i=1 i=1
Hence RZ(G) > F(G) + 2My(G) + 4t — AM,(G) + 2 (My(G))? + ID(G) — 5.
Equality holds if and only if G is regular.

3. Conclusion: In this article, we have presented several upper and lower bounds
for RZ-invariant for a connected graph.

References

[1] K. C. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J.
Math. Chem., 46(2009) 514-521.

[2] N. De, Some bounds of reformulated Zagreb indices, Appl. Math. Sci., 101
(2012), 5005-5012.

[3] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Com-
mun. Math. Comput. Chem., 50(2004) 83-92.

[4] T. Gutman, N. Trinajsti¢, Graph theory and molecular orbitals, Total p-
electron energy of alternate hydrocarbons, Chem. Phys. Lett., 17(1972),
535-H38.

[5] A. Tli¢, B. Zhou, On reformulated Zagreb indices, Discrete Appl. Math., 160
(2012), 204-209.

[6] A. Milicevi¢, S. Nikoli¢ and N. Trinajsti¢, On reformulated Zagreb indices,
Mol. Divers., 8(2004), 393-399.

[7] G. Su, L. Xiong, L. Xu and B. Ma, On the maximum and minimum first
reformulated Zagreb index with connectivity of at most k, Filomat, 25 (2011),
75-83.



