South East Asian J. of Mathematics and Mathematical Sciences Vol. 16, No. 1 (A) (2020), pp. 01-06

ISSN (Online): 2582-0850

ISSN (Print): 0972-7752

BOUNDS ON RZ-INVARIANT OF GRAPHS

K. Pattabiraman and Manzoor Ahmad Bhat*

Department of Mathematics, Government Arts College(Autonomous), Kumbakonam - 612002, Tamil Nadu, INDIA

E-mail: pramank@gmail.com

*Department of Mathematics, Annamalai University, Annamalai Nagar, Annamalai Nagar - 608002, Tamil Nadu, INDIA

(Received: Mar. 01, 2020 Accepted: April. 25, 2020 Published: Apr. 30, 2020)

Abstract: The RZ-invariant of a simple connected graph G is defined as the sum of the terms $(Deg(u) + Deg(v) - 2)^2$ over all edges uv of G, where Deg(u) is the degree of a vertex u in G. In this paper, we obtain some new upper and lower bounds for the RZ-invariant in terms of other graph parameters.

Keywords and Phrases: Degree, Zagreb invariant, RZ-invariant.

2010 Mathematics Subject Classification: 05C12, 05C76.

1. Introduction

Topological index is a graph theoretical property that is preserved by isomorphism. The chemical information derived through topological index has been found useful in chemical documentation, isomer discrimination, structure property correlations. The interest in topological indices is mainly related to their use in non-empirical quantitative structure-property relationships and quantitative structural-activity relationships. The first and second Zagreb invariant of a graph were first introduced by Gutman in [4] which are the oldest and most used topological indices [3, 1] defined as $M_1(G) = \sum_{v \in E(G)} Deg(v)^2$ and $M_2(G) = \sum_{uv \in E(G)} Deg(u)Deg(v)$.

Analogues to Zagreb indices Milicević et al. [6] in 2004 reformulated the Zagreb invariant in terms of edge degrees instead of vertex degrees, where the degree of

an edge Deg(e) is defined as Deg(e) = Deg(u) + Deg(v) - 2. Thus the first RZ-invariant of a graph G is defined as $RZ(G) = \sum_{e \in E(G)} Deg(e)^2 = \sum_{uv \in E(G)} (Deg(u) + Deg(u))^2$

 $Deg(v) - 2)^2$. RZ-invariant, particularly its upper and lower bounds has attracted recently the attention of many mathematicians and computer scientists, see [2, 5, 6, 7]. In this paper, we obtain some new upper and lower bounds for the RZ-invariant in terms of other graph parameters.

2. Main Results

The inverse vertex degree of G, denoted by ID(G), is defined as $ID(G) = \sum_{x \in V(G)} \frac{1}{Deg(x)}$ and the inverse edge degree of G with non-isolated edges is defined as $ID_e(G) = \sum_{e \in E(G)} \frac{1}{Deg(e)}$.

Theorem 2.1. Let G be a graph with s vertices and t edges. Then $RZ(G) \le 2(\Delta(G) + \delta(G) - 2)M_1(G) - 4t(\Delta(G)\delta(G) - 1)$ with equality if and only if G is regular.

Proof. For any vertex $v \in V(G)$, we have $\delta(G) \leq Deg(v) \leq \Delta(G)$. Similarly, for any edge $e_i \in E(G)$, we get $2(\delta(G) - 1) \leq Deg(e) \leq Deg(v) \leq 2(\Delta(G) - 1)$ with the edges are labeled and bounded by $\delta(G) \leq Deg(v_i) \leq \Delta(G)$ for i = 1, 2, ..., s. The edge degree is bounded by $e_1, e_2, ..., e_t$ such that $Deg(e_1) \geq Deg(e_2) \geq ... \geq Deg(e_t)$. Hence

$$\sum_{i=1}^{t} Deg(e_{i})^{2} = \sum_{i=1}^{t} \left(Deg(e_{i})(Deg(e_{i}) - Deg(e_{t})) + Deg(e_{i})Deg(e_{t}) \right)$$

$$\leq \sum_{i=1}^{t} \left(Deg(e_{1})(Deg(e_{i}) - Deg(e_{t})) + Deg(e_{i})Deg(e_{t}) \right)$$

$$\leq \sum_{i=1}^{t} \left(2(\Delta(G) - 1) \left(Deg(e_{i}) - 2(\delta(G) - 1) \right) + Deg(e_{i})2 \left(\delta(G) - 1 \right) \right)$$

$$= \left(2(\Delta(G) + \delta(G)) - 4 \right) \sum_{i=1}^{t} \left(Deg(e_{i}) - 4(\Delta(G) - 1) \right) \left(\delta(G) - 1 \right) \sum_{i=1}^{t} (1).$$

From the definition of RZ-invariant, we obtain; $\sum_{uv \in E(G)} \left(Deg(u) + Deg(v) - Deg(v) \right)$

$$2\Big)^2 \leq \Big(2(\Delta(G)+\delta(G))-4\Big)\sum_{uvE(G)}\Big(Deg(u)+Deg(v)-2\Big)-4(\delta(G)-1)(\Delta(G)-1)\Big)$$

1)
$$\sum_{uv \in E(G)} (1). \text{ Hence } RZ(G) \leq 2\left(\Delta(G) + \delta(G) - 2\right) M_1(G) - 4\left(\Delta(G)\delta(G) - 1\right)t.$$

This completes the proof with equality if and only if G is regular.

Next we improve the bounds given in Theorem 2.1 by using Harmonic index

H(G) which is defined for a connected graph G as $H(G) = \sum_{uv \in E(G)} \frac{2}{Deg(u) + Deg(v)}$.

Theorem 2.2. Let G be a simple connected graph with s vertices and t edges. Then $RZ(G) \leq \left(2(\Delta(G) + \delta(G)) - 3\right)M_1(G) - 2t\left(\Delta(G) + \delta(G) + 2\delta(G)\Delta(G) - \delta(G)\Delta(G)H(G) - 2\right)$. Equality holds if and only if G is a regular graph.

Proof. By Theorem 2.1, $RZ(G) \leq 2\left(\Delta(G) + \delta(G) - 2\right)M_1(G) - 4t\left(\delta(G)\Delta(G) - 1\right)$. For any edge $uv \in E(G)$, it is true that $\frac{1}{Deg(u) + Deg(v)} < 1$ and using in the above inequality, we obtain

$$\begin{split} &\sum_{uv \in E(G)} \left[1 - \frac{1}{Deg(u) + Deg(v)}\right] \left(Deg(u) + Deg(v) - 2\right)^2 \\ &\leq \left(2(\Delta(G) + \delta(G)) - 4\right) \sum_{uv \in E(G)} \left[1 - \frac{1}{Deg(u) + Deg(v)}\right] \left(Deg(u) + Deg(v)\right) \\ &- 4(\Delta(G)\delta(G) - 1) \sum_{uv \in E(G)} \left[1 - \frac{1}{Deg(u) + Deg(v)}\right]. \end{split}$$

$$\begin{split} &\sum_{uv \in E(G)} \left[\left(Deg(u) + Deg(v) - 2 \right)^2 - \left(Deg(u) + Deg(v) \right) + 4 - \frac{4}{Deg(u) + Deg(v)} \right] \\ &\leq \left(2(\Delta(G) + \delta(G)) - 4 \right) \sum_{uv \in E(G)} \left[Deg(u) + Deg(v) \right] - \left(2(\Delta(G) + \delta(G)) - 4 \right) t \\ &- 4 \Big(\Delta(G)\delta(G) - 1 \Big) t + \sum_{uv \in E(G)} \left(\frac{4(\Delta(G)\delta(G) - 1)}{Deg(u) + Deg(v)} \right). \end{split}$$

By the definitions of Zagreb and RZ invariants, we have

$$RZ(G) - M_1(G) + 4t - 2H(G) \le \left(2(\Delta(G) + \delta(G)) - 4\right)M_1(G) - \left(2(\Delta(G) + \delta(G)) - 4\right)t$$
$$-4\left(\Delta(G)\delta(G) - 1\right)t + 2\left(\Delta(G)\delta(G) - 1\right)\sum_{uv \in E(G)} \left(\frac{2}{Deg(u) + Deg(v)}\right).$$

Hence $RZ(G) = M_1(G) + 2H(G) - 4t + \left(2(\Delta(G) + \delta(G)) - 4\right)M_1(G) - 2(\Delta(G) + \delta(G))t + 4t - 4(\Delta(G)\delta(G))t + 4t + 2(\Delta(G)\delta(G) - 1)H(G) = \left(2(\Delta(G) + \delta(G)) - 3\right)M_1(G) - 2(\Delta(G) + \delta(G))t - 4\Delta(G)\delta(G)t + 4t + 2\Delta(G)\delta(G)H(G)$. Equality holds if and only if G is a regular graph, hence completes the proof.

Theorem 2.3. Let G be a simple connected graph with s vertices and t edges. If G

has no isolated edges, then $RZ(G) \leq (2(\Delta(G) + \delta(G)) - 3)M_1(G) - 2t(3\Delta(G) + 3\delta(G) + 2(\Delta(G) - 1)(\delta(G) - 1) - 5) + 4(\Delta(G) - 1)(\delta(G) - 1)ID_e(G)$ with equality if and only G is a regular graph.

Proof. Let G be a graph with no isolated edges. Then Deg(u) + Deg(v) > 2 and with the assumption of the proof of Theorem 2.1, we have

$$\sum_{i=1}^{t} \left[1 - \frac{1}{Deg(e_i)} \right] Deg(e_i)^2 \leq \left(2(\Delta(G) + \delta(G)) - 4 \right) \sum_{i=1}^{t} \left[1 - \frac{1}{Deg(e_i)} \right] Deg(e_i) \\
-4(\Delta(G) - 1)(\delta(G) - 1) \sum_{i=1}^{t} \left[1 - \frac{1}{Deg(e_i)} \right].$$

$$\begin{split} \sum_{i=1}^t Deg(e_i)^2 - \sum_{i=1}^t Deg(e_i) & \leq & \left(2(\Delta(G) + \delta(G)) - 4\right) \bigg[\sum_{i=1}^t Deg(e_i) - \sum_{i=1}^t 1\bigg] \\ & - 4(\Delta(G) - 1)(\delta(G) - 1) \bigg[\sum_{i=1}^t 1 + \sum_{i=1}^t \frac{1}{Deg(e_i)}\bigg]. \end{split}$$

$$\begin{split} \sum_{uv \in E(G)} (Deg(u) + Deg(v) - 2)^2 & \leq & \sum_{uv \in E(G)} (Deg(u) + Deg(v) - 2) \\ & + \Big(2(\Delta(G) + \delta(G)) - 4 \Big) \sum_{uv \in E(G)} (Deg(u) + Deg(v) - 2) \\ & - \Big(2(\Delta(G) + \delta(G)) - 4 \Big) t - 4(\Delta(G) - 1)(\delta(G) - 1) t \\ & + 4(\Delta(G) - 1)(\delta(G) - 1) \sum_{uv \in E(G)} \frac{1}{(Deg(u) + Deg(v) - 2)}. \end{split}$$

From the definition of RZ-invariant, we have $RZ(G) \leq M_1(G) - 2t + 2(\Delta(G) + \delta(G) - 2)M_1(G) - 6(\Delta(G) + \delta(G) - 2)t - 4(\Delta(G) - 1)(\delta(G) - 1)t + 4(\Delta(G) - 1)(\delta(G) - 1)ID_e(G) = (1 + 2((\Delta(G) + \delta(G)) - 2))M_1(G) + 10t - 6(\Delta(G) + \delta(G))t - 4(\Delta(G) - 1)(\delta(G) - 1)t + 4(\Delta(G) - 1)(\delta(G) - 1)ID_e(G)$. The equality holds for any vertex $v \in V(G)$, $Deg(v) = \Delta(G) = \delta(G)$. This implies that G is regular.

The bidegreed graph is a graph whose vertices have exactly two vertex degrees $\Delta(G)$ and $\delta(G)$.

Theorem 2.4. Let G be a simple connected graph with s vertices and t edges. If G has no isolated edges, then $RZ(G) \leq \left(\Delta(G) + \delta(G) - 4\right) M_1(G) + \Delta(G)\delta(G)ID(G) - 2t(\Delta(G)\delta(G) - 3) - (\Delta(G) + \delta(G))s$ with equality if and only if G is regular (or)

bidegreed graph.

Proof. Suppose $a, A \in R$ and x_i, y_i be two sequences in such a way that it has the property $ay_i \leq x_i \leq Ay_i$ for i = 1, 2, ..., s and w_i be any sequence of positive real numbers, it holds $w_i(Ay_i - x_i)(x_i - ay_i) \geq 0$. Since w_i is a positive sequence, choose $w_i = m_i - n_i$ such that $m_i \geq n_i$, we get $\sum_{i=1}^s (m_i - n_i) \left((A + a)x_iy_i - x_i^2 - Aay_i^2 \right) \geq 0$. By setting $A = \Delta(G), a = \delta(G), x_i = Deg(v_i), y_i = 1, m_i = Deg(v_i)$ and $n_i = Deg(v_i)^{-1}$, we have

$$(\Delta(G)+\delta(G))\sum_{i=1}^{s}Deg(v_{i})^{2}-\sum_{i=1}^{s}Deg(v_{i})^{3}-(\Delta(G)\delta(G))\sum_{i=1}^{s}Deg(v_{i})\geq(\Delta(G)+\delta(G))\sum_{i=1}^{s}Deg(v_{i})-(\Delta(G)\delta(G))\sum_{i=1}^{s}\frac{1}{Deg(v_{i})}.$$
 Simplify the above inequality, we have
$$(\Delta(G)+\delta(G))M_{1}(G)-F(G)-2t\Delta\delta\geq(\Delta(G)+\delta(G))s-2t-\Delta(G)\delta(G)ID(G).$$

$$F(G)\leq(\Delta(G)+\delta(G))M_{1}(G)-2t\Delta\delta-(\Delta(G)+\delta(G))s+2t+\Delta(G)\delta(G)ID(G)+4t-4M_{1}(G).$$

From the definition of RZ-invariant, we obtain $RZ(G) \leq (\Delta(G) + \delta(G) - 4)M_1(G) + \Delta(G)\delta(G)ID(G) - 2t(\Delta(G)\delta(G) - 3) - (\Delta(G) + \delta(G))s$.

Theorem 2.5. Let G be a simple connected graph with s vertices and t edges. If G has no isolated edges, then $RZ(G) \leq (\Delta(G) + \delta(G) - 4)M_1(G) + \Delta(G)\delta(G)ID(G) - 2t(\delta(G)\delta(G) - 3) - (\delta(G) + \delta(G))s$.

Proof. The proof follows by using similar arguments as in the proof of theorem ??. By setting $A = \Delta(G), a = \delta(G), x_i = d(v_i), y_i = 1, t_i = d(v_i)$ and $a_i = 1$, we have $(\Delta(G) + \delta(G)) \sum_{i=1}^{s} Deg(v_i)^2 - \sum_{i=1}^{a} Deg(v_i)^3 - (\Delta(G)\delta(G)) \sum_{i=1}^{s} Deg(v_i) \ge (\Delta(G) + \delta(G)) \sum_{i=1}^{s} Deg(v_i) - \sum_{i=1}^{s} Deg(v_i)^2 - (\Delta(G)\delta(G)) \sum_{i=1}^{s} (1).$

 $(\Delta(G)+\delta(G))M_1(G)-F(G)-2t\Delta(G)\delta(G)\geq (\Delta(G)+\delta(G))2t+M_1(G)+\Delta(G)\delta(G)s. \ F(G)\leq (\Delta(G)+\delta(G))M_1(G)-2t\Delta(G)\delta(G)-(\Delta(G)+\delta(G))2t+M_1(G)+\Delta(G)\delta(G)s+4t-4M_1(G).$ From the definition of RZ-invariant, we obtain the required result.

Theorem 2.6. Let G be a simple connected graph with s vertices and t edges. If G has no isolated edges, then $RZ(G) \geq F(G) + 2M_2(G) + 4t - 4M_1(G) + \frac{1}{2t}[(M_1(G))^2 - s^2] + ID(G)$. Equality holds if and only if G is regular.

Proof. Suppose w_1, w_2, \ldots, w_n be non-negative weights, then we have the weighted version of Cauchy-Schwartz inequality, we have $\sum_{i=1}^n w_i a_i^2 \sum_{i=1}^n w_i b_i^2 \ge \left(\sum_{i=1}^n w_i a_i b_i\right)^2$. Let $w_i = m_i - n_i$ such that $m_i \ge n_i \ge 0$. Then

$$\sum_{i=1}^{s} m_{i} a_{i}^{2} \sum_{i=1}^{s} m_{i} b_{i}^{2} - \left(\sum_{i=1}^{s} (m_{i} a_{i} b_{i})\right)^{2} \ge \sum_{i=1}^{s} n_{i} a_{i}^{2} \sum_{i=1}^{s} n_{i} b_{i}^{2} - \left(\sum_{i=1}^{s} (n_{i} a_{i} b_{i})\right)^{2} \ge 0.$$
By setting $m_{i} = Deg(v_{i}), n_{i} = \frac{1}{Deg(v_{i})}, a_{i} = Deg(v_{i}) \text{ and } b_{i} = 1, \text{ for all } i = 1, 2, \ldots, s \text{ in the above inequality we have,}$

$$\sum_{i=1}^{s} Deg(v_i)^3 \sum_{i=1}^{s} Deg(v_i) - \left(\sum_{i=1}^{s} Deg(v_i)^2\right)^2 \ge \sum_{i=1}^{s} Deg(v_i) \sum_{i=1}^{s} \frac{1}{Deg(v_i)} - \left(\sum_{i=1}^{s} (1)\right)^2$$

$$\sum_{i=1}^{n} Deg(v_i)^3 \ge \frac{1}{\sum_{i=1}^{s} Deg(v_i)} \left[\left(\sum_{i=1}^{s} Deg(v_i)^2\right)^2 + \sum_{i=1}^{s} Deg(v_i) \sum_{i=1}^{s} \frac{1}{Deg(v_i)} - \left(\sum_{i=1}^{s} (1)\right)^2 \right].$$

Hence $RZ(G) \geq F(G) + 2M_2(G) + 4t - 4M_1(G) + \frac{1}{2m}(M_1(G))^2 + ID(G) - \frac{s^2}{2t}$. Equality holds if and only if G is regular.

3. Conclusion: In this article, we have presented several upper and lower bounds for RZ-invariant for a connected graph.

References

- [1] K. C. Das, I. Gutman and B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem., 46(2009) 514-521.
- [2] N. De, Some bounds of reformulated Zagreb indices, Appl. Math. Sci., 101 (2012), 5005-5012.
- [3] I. Gutman, K.C. Das, The first Zagreb index 30 years after, MATCH Commun. Math. Comput. Chem., 50(2004) 83-92.
- [4] I. Gutman, N. Trinajstić, Graph theory and molecular orbitals, Total pelectron energy of alternate hydrocarbons, Chem. Phys. Lett., 17(1972), 535-538.
- [5] A. Ilić, B. Zhou, On reformulated Zagreb indices, Discrete Appl. Math., 160 (2012), 204-209.
- [6] A. Milicević, S. Nikolić and N. Trinajstić, On reformulated Zagreb indices, Mol. Divers., 8(2004), 393-399.
- [7] G. Su, L. Xiong, L. Xu and B. Ma, On the maximum and minimum first reformulated Zagreb index with connectivity of at most k, Filomat, 25 (2011), 75-83.